

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # nf-core/quantms: Documentation

The nf-core/quantms documentation is split into the following pages:

	[Usage](usage.md)
- An overview of how the pipeline works, how to run it and a description of all of the different command-line flags.

	[Output](output.md)
- An overview of the different results produced by the pipeline and how to interpret them.

You can find a lot more documentation about installing, configuring and running nf-core pipelines on the website: https://nf-co.re

 # nf-core/quantms: Output

Introduction

This document describes the output produced by the pipeline. Most of the plots are taken from the MultiQC report, which summarises results at the end of the pipeline.

The directories listed below will be created in the results directory after the pipeline has finished. All paths are relative to the top-level results directory.

Pipeline overview

The pipeline is built using [Nextflow](https://www.nextflow.io/) and processes data using the following steps for DDA-LFQ and DDA-ISO data:

	(optional) Conversion of spectra data to indexedMzML: Using ThermoRawFileParser if Thermo Raw or using OpenMS’ FileConverter if just an index is missing

	(optional) Decoy database generation for the provided DB (fasta) with OpenMS

	Database search with either MSGF+ and/or Comet through OpenMS adapters

	Re-mapping potentially identified peptides to the input database for consistency and error-checking (using OpenMS’ PeptideIndexer)

	PSM rescoring using PSMFeatureExtractor and Percolator or a PeptideProphet-like distribution fitting approach in OpenMS

	If multiple search engines were chosen, the results are combined with OpenMS’ ConsensusID

	If multiple search engines were chosen, a combined FDR is calculated

	Single run PSM/Peptide-level FDR filtering

	If localization of modifications was requested, Luciphor2 is applied via the OpenMS adapter

	(DDA-LFQ) Protein inference and label-free quantification based on spectral counting or MS1 feature detection, alignment and integration with OpenMS’ ProteomicsLFQ. Performs an additional experiment-wide FDR filter on protein (and if requested peptide/PSM-level).

	(DDA-ISO) Extracts and normalizes isobaric labeling

	(DDA-ISO) Protein inference using the OpenMS ProteinInference tool. In addition, protein FDR filtering is performed in this step for Isobaric datasets (TMT, iTRAQ).

	(DDA-ISO) Protein Quantification

	Generation of QC reports using pMultiQC a library for QC proteomics data analysis.

For DIA-LFQ experiments, the workflows is different:

	RAW data is converted to mzML using the ThermoRawFileParser

	DIA-NN is used to for identification, quantification of the peptides and proteins

	Generation of output files

	Generation of QC reports using pMultiQC a library for QC proteomics data analysis.

As an example, a rough visualization of the DDA identification subworkflow can be seen here:

![quantms LFQ workflow](./images/id-dda-pipeline.png)

Output structure

Output will be saved to the folder defined by parameter –outdir. Each step of the workflow export different files and reports with the specific data, peptide identifications, protein quantifications, etc. Most of the pipeline outputs are [HUPO-PSI](https://www.psidev.info/) standard file formats:

	[mzML](https://www.psidev.info/mzML): The mzML format is an open, XML-based format for mass spectrometer output files, developed with the full participation of vendors and researchers in order to create a single open format that would be supported by all software.

	[mzTab](https://www.psidev.info/mztab>): mzTab is intended as a lightweight supplement to the existing standard mzML to store and represent peptide and protein and identifications together with experimental metadata and basic quantitative information.

The output consists of the following folders (follow the links for a more detailed description):

results

	spectra data:
- [thermorawfileparser/*.mzML](#spectra)

	identification results:
- [searchenginecomet/*.idXML](#identifications)
- [searchenginemsgf/*.idXML](#identifications)

	consensusID identifications:
- [consensusid/*.idXML](#identifications)

	pipeline information:
- [pipeline_info/…](#nextflow-pipeline-info)

	DDA-LFQ quantification results:
- [proteomicslfq/out.consensusXML](#consensusxml)
- [proteomicslfq/out_msstats.csv](#msstats-ready-quantity-tables)
- [proteomicslfq/out_triqler.tsv](#triqler)
- [proteomicslfq/out.mzTab](#mztab)

	DDA-ISO quantification results:
- [proteinquantifier/out.mzTab](#mztab)
- [proteinquantifier/peptide_out.csv](#tab-based-openms-formats)
- [proteinquantifier/protein_out.csv](#tab-based-openms-formats)
- [msstatsconverter/out_msstats.csv](#msstats-ready-quantity-tables)

	DIA-LFQ quantification results:
- [convert2msstats/out_msstats.csv](#msstats-ready-quantity-tables)

	MSstats-processed results
- [msstats/out_msstats.mzTab](#msstats-processed-mztab)

Output description

Nextflow pipeline info

[Nextflow](https://www.nextflow.io/docs/latest/tracing.html) provides excellent functionality for generating various reports relevant to the running and execution of the pipeline. This will allow you to troubleshoot errors with the running of the pipeline, and also provide you with other information such as launch commands, run times and resource usage.

<details markdown=”1”>
<summary>Output files</summary>

-pipeline_info/ - Reports generated by Nextflow: execution_report.html, execution_timeline.html, execution_trace.txt and pipeline_dag.dot/pipeline_dag.svg. - Reports generated by the pipeline: pipeline_report.html, pipeline_report.txt and software_versions.yml. The pipeline_report* files will only be present if the –email / –email_on_fail parameter’s are used when running the pipeline. - Reformatted samplesheet files used as input to the pipeline: samplesheet.valid.csv.

</details>

File types

Spectra

Quantms main format for spectra is the open [mzML](https://www.psidev.info/mzML) format. However, it also supports Thermo raw files through conversion with
ThermoRawFileParser. Mixed inputs should be possible but are untested. Conversion results can be cached if run locally or outputted to results.
Mismatches between file extensions in the design and on disk can be corrected through parameters.

Protein database

The input protein database needs to be in standard fasta format. We recommend removing stop codons * in a way that is suitable to your analysis to avoid
different handling between peptide search engines.

Identifications

Intermediate output for the PSM/peptide-level filtered identifications per raw/mzML file happens in OpenMS’
internal [idXML](https://github.com/OpenMS/OpenMS/blob/develop/share/OpenMS/SCHEMAS/IdXML_1_5.xsd) format. Only for DDA currently.

Quantities

Depending on the mode, quantms reports its outputs for quantities in different folders and formats, see [Output structure](#output-structure).

ConsensusXML

A [consensusXML](https://github.com/OpenMS/OpenMS/blob/develop/share/OpenMS/SCHEMAS/ConsensusXML_1_7.xsd) file as the closest representation of the internal data
structures generated by OpenMS. Helpful for debugging and downstream processing with OpenMS tools.

Tab-based OpenMS formats

In addition to the consensusXML and idXML formats, OpenMS generates other formats that can help the downstream analysis of the quantms results. DDA-LFQ only.

	peptide_out.tsv: The peptide output (peptide_out.tsv) from [ProteinQuantifier](https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_ProteinQuantifier.html) contains a peptide table with the corresponding quantification data.

	protein_out.tsv: The protein output (protein_out.tsv) from [ProteinQuantifier](https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_ProteinQuantifier.html) contains the protein information including quantification values.

MSstats-ready quantity tables

MSstats output is generated for all three pipelines DDA-LFQ, DDA-ISO and DIA-LFQ. A simple tsv file ready to be read by the
OpenMStoMSstats function of the MSstats R package. It should hold the same quantities as the consensusXML but rearranged in a “long” table format with additional
information about the experimental design used by MSstats.

Triqler

Output to be used as input in Triqler has similar information in a tsv format as the output for MSstats. Additionally, it contains quantities for
decoy identifications and search engine scores.

mzTab

The mzTab is exported for all three workflows DDA-LFQ, DDA-ISO and DIA-LFQ. It is a complete [mzTab](https://github.com/HUPO-PSI/mzTab) file
ready for submission to [PRIDE](https://www.ebi.ac.uk/pride/). It contains both identifications (only those responsible for a quantification),
quantities and some metadata about both the experiment and the quantification.

mzTab is a multi-section TSV file where the first column is a section identifier:

	MTD: Metadata

	PRH: Protein header line

	PRT: Protein entry line

	PEH: Peptide header line

	PEP: Peptide entry line

	PSH: Peptide-spectrum match header

	PSM: Peptide-spectrum match entry line

Some explanations for optional (“opt_”) columns:

PRT section:

	opt_global_Posterior_Probability_score: As opposed to the best_search_engine_score columns (which usually represent an FDR [consult the MTD section]) this specifies the posterior probability for a protein or protein group as calculated by protein inference.

	opt_global_nr_found_peptides: The number of found peptides for the protein (group). By default this counts unmodified peptide sequences (TODO double-check)

	opt_global_cv_PRIDE:0000303_decoy_hit: If this was a real target hit or a decoy entry added artificially to the protein database.

	opt_global_result_type:
- single_protein: A protein that is uniquely distinguishable from others. Note: this could be a subsumable protein.
- indistinguishable_protein_group: A group of proteins that share exactly the same set of observed peptides.
- protein_details: A dummy entry for every protein belonging to either of the two classes above. In case of an indistinguishable group, it would otherwise not be possible to report unique sequence coverage information about each member of the group. Do not use these entries for quantitative information or scoring as they will be “null/empty”. They shall only be used to extract auxiliary information if required.

PEP section:

	opt_global_cv_MS:1000889_peptidoform_sequence: The sequence of the best explanation of this feature/spectrum but with modifications.

	opt_global_feature_id: A unique ID assigned by internal algorithms. E.g., for looking up additional information in the PSM section or other output files like consensusXML

	opt_global_SpecEValue_score: Spectral E-Value for the best match for this peptide (from the MSGF search engine)

	opt_global_q-value(_score): Experiment-wide q-value of the best match. The exact interpretation depends on the FDR/q-value settings of the pipeline.

	opt_global_cv_MS:1002217_decoy_peptide: If the peptide from the best match was a target peptide from the digest of the input protein database, or an annotated or generated decoy.

	opt_global_mass_to_charge_study_variable[n]: The m/z of the precursor (isobaric) or the feature (LFQ) in study_variable (= usually sample) n.

	opt_global_retention_time_study_variable[n]: The retention time in seconds of the precursor (isobaric) or the feature (LFQ) in study_variable (= usually sample) n.

PSM section:

	opt_global_FFId_category: Currently always “internal”.

	opt_global_feature_id: A unique ID assigned by internal algorithms. E.g., for looking up additional information in the PEP section or other output files like consensusXML.

	opt_global_map_index: May be ignored. Should be a one-to-one correspondence between “ms_run” in which this PSM was found and the value in this column + 1.

	opt_global_spectrum_reference: May be ignored. Should be a one-to-one correspondence between the second part of the spectra_ref column and this column.

	opt_global_cv_MS:1000889_peptidoform_sequence: The sequence for this match including modifications.

	opt_global_SpecEValue_score: Spectral E-Value for this match (from the MSGF search engine)

	opt_global_q-value(_score): Experiment-wide q-value. The exact interpretation depends on the FDR/q-value settings of the pipeline.

	opt_global_cv_MS:1002217_decoy_peptide: If the peptide from this match was a target peptide from the digest of the input protein database, or an annotated or generated decoy.

Note that columns with scores heavily depend on the chosen search engines and rescoring tools and are better looked up in the documentation of the underlying tool.

MSstats-processed mzTab

If MSstats was enabled, the pipeline additionally exports an mzTab file where the quantities are replaced with the normalized and imputed ones from
MSstats.

MultiQC and pMultiQC

<details markdown=”1”>
<summary>Output files</summary>

	multiqc/<ALIGNER>/
- multiqc_report.html: a standalone HTML file that can be viewed in your web browser.
- multiqc_data/: directory containing parsed statistics from the different tools used in the pipeline.

</details>

All the QC results for proteomics are currently generated by the [pMultiQC](https://github.com/bigbio/pmultiqc) library, a plugin of the popular visualization tool [MultiQC](http://multiqc.info). MultiQC is a visualization tool that generates a single HTML report summarising all samples in your project. Most of the pipeline QC results are visualised in the report and further statistics are available in the report data directory.

Results generated by pMultiQC collate pipeline QC from identifications and quantities over the course of the pipeline. The pipeline has special steps which also allow the software versions to be reported in the MultiQC output for future traceability. For more information about how to use pMultiQC reports in general, see <https://github.com/bigbio/pmultiqc>.

 # nf-core/quantms: Usage

:warning: Please read this documentation on the nf-core website: https://nf-co.re/quantms/usage

> _Documentation of pipeline parameters is generated automatically from the pipeline schema and can no longer be found in markdown files._

Introduction

Running the pipeline

The typical command for running the pipeline is as follows:

`bash
nextflow run nf-core/quantms --input '/url/path/to/your/experimentX_design.tsv' --database '/url/path/to/your/proteindatabase.fasta' --outdir './results' -profile docker
`

where the experimental design file has to be one of:

	[Sample-to-data-relationship format](https://pubs.acs.org/doi/abs/10.1021/acs.jproteome.0c00376) (.sdrf.tsv)

	[OpenMS experimental design format](https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/release/latest/html/classOpenMS_1_1ExperimentalDesign.html#details) (.tsv)

In the respective “comment[file uri]” or “Spectra_Filepath” columns, the raw or mzML files with the mass spectra to be staged have to be listed. URIs are possible,
and the root folder as well as the file endings can be changed in the options in case of previously downloaded, moved or converted experiments.

This will launch the pipeline with the docker configuration profile. See below for more information about profiles.

Note that the pipeline will create the following files in your working directory:

`bash
work # Directory containing the nextflow working files
<OUTDIR> # Finished results in specified location (defined with --outdir)
.nextflow_log # Log file from Nextflow
Other nextflow hidden files, eg. history of pipeline runs and old logs.
`

Updating the pipeline

When you run the above command, Nextflow automatically pulls the pipeline code from GitHub and stores it as a cached version. When running the pipeline after this, it will always use the cached version if available - even if the pipeline has been updated since. To make sure that you’re running the latest version of the pipeline, make sure that you regularly update the cached version of the pipeline:

`bash
nextflow pull nf-core/quantms
`

Reproducibility

It is a good idea to specify a pipeline version when running the pipeline on your data. This ensures that a specific version of the pipeline code and software are used when you run your pipeline. If you keep using the same tag, you’ll be running the same version of the pipeline, even if there have been changes to the code since.

First, go to the [nf-core/quantms releases page](https://github.com/nf-core/quantms/releases) and find the latest pipeline version - numeric only (eg. 1.3.1). Then specify this when running the pipeline with -r (one hyphen) - eg. -r 1.3.1. Of course, you can switch to another version by changing the number after the -r flag.

This version number will be logged in reports when you run the pipeline, so that you’ll know what you used when you look back in the future. For example, at the bottom of the MultiQC reports.

Core Nextflow arguments

> NB: These options are part of Nextflow and use a _single_ hyphen (pipeline parameters use a double-hyphen).

-profile

Use this parameter to choose a configuration profile. Profiles can give configuration presets for different compute environments.

Several generic profiles are bundled with the pipeline which instruct the pipeline to use software packaged using different methods (Docker, Singularity, Podman, Shifter, Charliecloud, Conda) - see below.

> We highly recommend the use of Docker or Singularity containers for full pipeline reproducibility, however when this is not possible, Conda is also supported.

The pipeline also dynamically loads configurations from https://github.com/nf-core/configs when it runs, making multiple config profiles for various institutional clusters available at run time. For more information and to see if your system is available in these configs please see the [nf-core/configs documentation](https://github.com/nf-core/configs#documentation).

Note that multiple profiles can be loaded, for example: -profile test,docker - the order of arguments is important!
They are loaded in sequence, so later profiles can overwrite earlier profiles.

If -profile is not specified, the pipeline will run locally and expect all software to be installed and available on the PATH. This is _not_ recommended, since it can lead to different results on different machines dependent on the computer enviroment.

	test
- A profile with a complete configuration for automated testing
- Includes links to test data so needs no other parameters

	docker
- A generic configuration profile to be used with [Docker](https://docker.com/)

	singularity
- A generic configuration profile to be used with [Singularity](https://sylabs.io/docs/)

	podman
- A generic configuration profile to be used with [Podman](https://podman.io/)

	shifter
- A generic configuration profile to be used with [Shifter](https://nersc.gitlab.io/development/shifter/how-to-use/)

	charliecloud
- A generic configuration profile to be used with [Charliecloud](https://hpc.github.io/charliecloud/)

	conda
- A generic configuration profile to be used with [Conda](https://conda.io/docs/). Please only use Conda as a last resort i.e. when it’s not possible to run the pipeline with Docker, Singularity, Podman, Shifter or Charliecloud.

-resume

Specify this when restarting a pipeline. Nextflow will use cached results from any pipeline steps where the inputs are the same, continuing from where it got to previously. For input to be considered the same, not only the names must be identical but the files’ contents as well. For more info about this parameter, see [this blog post](https://www.nextflow.io/blog/2019/demystifying-nextflow-resume.html).

You can also supply a run name to resume a specific run: -resume [run-name]. Use the nextflow log command to show previous run names.

-c

Specify the path to a specific config file (this is a core Nextflow command). See the [nf-core website documentation](https://nf-co.re/usage/configuration) for more information.

Custom configuration

Resource requests

Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with an error code of 143 (exceeded requested resources) it will automatically resubmit with higher requests (2 x original, then 3 x original). If it still fails after three times then the pipeline is stopped.

Whilst the default requirements set within the pipeline will hopefully work for most people and with most input data, you may find that you want to customise the compute resources that the pipeline requests. Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with any of the error codes specified [here](https://github.com/nf-core/rnaseq/blob/4c27ef5610c87db00c3c5a3eed10b1d161abf575/conf/base.config#L18) it will automatically be resubmitted with higher requests (2 x original, then 3 x original). If it still fails after the third attempt then the pipeline execution is stopped.

For example, if the nf-core/rnaseq pipeline is failing after multiple re-submissions of the STAR_ALIGN process due to an exit code of 137 this would indicate that there is an out of memory issue:

``console
[62/149eb0] NOTE: Process `NFCORE_RNASEQ:RNASEQ:ALIGN_STAR:STAR_ALIGN (WT_REP1) terminated with an error exit status (137) – Execution is retried (1)
Error executing process > ‘NFCORE_RNASEQ:RNASEQ:ALIGN_STAR:STAR_ALIGN (WT_REP1)’

	Caused by:
	Process NFCORE_RNASEQ:RNASEQ:ALIGN_STAR:STAR_ALIGN (WT_REP1) terminated with an error exit status (137)

	Command executed:
	
	STAR
	–genomeDir star –readFilesIn WT_REP1_trimmed.fq.gz –runThreadN 2 –outFileNamePrefix WT_REP1. <TRUNCATED>

	Command exit status:
	137

	Command output:
	(empty)

	Command error:
	.command.sh: line 9: 30 Killed STAR –genomeDir star –readFilesIn WT_REP1_trimmed.fq.gz –runThreadN 2 –outFileNamePrefix WT_REP1. <TRUNCATED>

	Work dir:
	/home/pipelinetest/work/9d/172ca5881234073e8d76f2a19c88fb

Tip: you can replicate the issue by changing to the process work dir and entering the command bash .command.run
```

#### For beginners

A first step to bypass this error, you could try to increase the amount of CPUs, memory, and time for the whole pipeline. Therefor you can try to increase the resource for the parameters –max_cpus, –max_memory, and –max_time. Based on the error above, you have to increase the amount of memory. Therefore you can go to the [parameter documentation of rnaseq](https://nf-co.re/rnaseq/3.9/parameters) and scroll down to the show hidden parameter button to get the default value for –max_memory. In this case 128GB, you than can try to run your pipeline again with –max_memory 200GB -resume to skip all process, that were already calculated. If you can not increase the resource of the complete pipeline, you can try to adapt the resource for a single process as mentioned below.

#### Advanced option on process level

To bypass this error you would need to find exactly which resources are set by the STAR_ALIGN process. The quickest way is to search for process STAR_ALIGN in the [nf-core/rnaseq Github repo](https://github.com/nf-core/rnaseq/search?q=process+STAR_ALIGN).
We have standardised the structure of Nextflow DSL2 pipelines such that all module files will be present in the modules/ directory and so, based on the search results, the file we want is modules/nf-core/star/align/main.nf.
If you click on the link to that file you will notice that there is a label directive at the top of the module that is set to [label process_high](https://github.com/nf-core/rnaseq/blob/4c27ef5610c87db00c3c5a3eed10b1d161abf575/modules/nf-core/software/star/align/main.nf#L9).
The [Nextflow label](https://www.nextflow.io/docs/latest/process.html#label) directive allows us to organise workflow processes in separate groups which can be referenced in a configuration file to select and configure subset of processes having similar computing requirements.
The default values for the process_high label are set in the pipeline’s [base.config](https://github.com/nf-core/rnaseq/blob/4c27ef5610c87db00c3c5a3eed10b1d161abf575/conf/base.config#L33-L37) which in this case is defined as 72GB.
Providing you haven’t set any other standard nf-core parameters to cap the [maximum resources](https://nf-co.re/usage/configuration#max-resources) used by the pipeline then we can try and bypass the STAR_ALIGN process failure by creating a custom config file that sets at least 72GB of memory, in this case increased to 100GB.
The custom config below can then be provided to the pipeline via the [-c](#-c) parameter as highlighted in previous sections.

```nextflow
process {

	withName: ‘NFCORE_RNASEQ:RNASEQ:ALIGN_STAR:STAR_ALIGN’ {
	memory = 100.GB

}

}

> NB: We specify the full process name i.e. NFCORE_RNASEQ:RNASEQ:ALIGN_STAR:STAR_ALIGN in the config file because this takes priority over the short name (STAR_ALIGN) and allows existing configuration using the full process name to be correctly overridden.
>
> If you get a warning suggesting that the process selector isn’t recognised check that the process name has been specified correctly.

Updating containers (advanced users)

The [Nextflow DSL2](https://www.nextflow.io/docs/latest/dsl2.html) implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. If for some reason you need to use a different version of a particular tool with the pipeline then you just need to identify the process name and override the Nextflow container definition for that process using the withName declaration. For example, in the [nf-core/viralrecon](https://nf-co.re/viralrecon) pipeline a tool called [Pangolin](https://github.com/cov-lineages/pangolin) has been used during the COVID-19 pandemic to assign lineages to SARS-CoV-2 genome sequenced samples. Given that the lineage assignments change quite frequently it doesn’t make sense to re-release the nf-core/viralrecon everytime a new version of Pangolin has been released. However, you can override the default container used by the pipeline by creating a custom config file and passing it as a command-line argument via -c custom.config.

	Check the default version used by the pipeline in the module file for [Pangolin](https://github.com/nf-core/viralrecon/blob/a85d5969f9025409e3618d6c280ef15ce417df65/modules/nf-core/software/pangolin/main.nf#L14-L19)

	Find the latest version of the Biocontainer available on [Quay.io](https://quay.io/repository/biocontainers/pangolin?tag=latest&tab=tags)

	Create the custom config accordingly:

	For Docker:

```nextflow
process {



	withName: PANGOLIN {
	container = ‘quay.io/biocontainers/pangolin:3.0.5–pyhdfd78af_0’





}






	For Singularity:

```nextflow
process {

	withName: PANGOLIN {
	container = ‘https://depot.galaxyproject.org/singularity/pangolin:3.0.5–pyhdfd78af_0 [https://depot.galaxyproject.org/singularity/pangolin:3.0.5--pyhdfd78af_0]’

}

	For Conda:

```nextflow
process {



	withName: PANGOLIN {
	conda = ‘bioconda::pangolin=3.0.5’





}












> NB: If you wish to periodically update individual tool-specific results (e.g. Pangolin) generated by the pipeline then you must ensure to keep the work/ directory otherwise the -resume ability of the pipeline will be compromised and it will restart from scratch.

### nf-core/configs

In most cases, you will only need to create a custom config as a one-off but if you and others within your organisation are likely to be running nf-core pipelines regularly and need to use the same settings regularly it may be a good idea to request that your custom config file is uploaded to the nf-core/configs git repository. Before you do this please can you test that the config file works with your pipeline of choice using the -c parameter. You can then create a pull request to the nf-core/configs repository with the addition of your config file, associated documentation file (see examples in [nf-core/configs/docs](https://github.com/nf-core/configs/tree/master/docs)), and amending [nfcore_custom.config](https://github.com/nf-core/configs/blob/master/nfcore_custom.config) to include your custom profile.

See the main [Nextflow documentation](https://www.nextflow.io/docs/latest/config.html) for more information about creating your own configuration files.

If you have any questions or issues please send us a message on [Slack](https://nf-co.re/join/slack) on the [#configs channel](https://nfcore.slack.com/channels/configs).

## Azure Resource Requests

To be used with the azurebatch profile by specifying the -profile azurebatch.
We recommend providing a compute params.vm_type of Standard_D16_v3 VMs by default but these options can be changed if required.

Note that the choice of VM size depends on your quota and the overall workload during the analysis.
For a thorough list, please refer the [Azure Sizes for virtual machines in Azure](https://docs.microsoft.com/en-us/azure/virtual-machines/sizes).

## Running in the background

Nextflow handles job submissions and supervises the running jobs. The Nextflow process must run until the pipeline is finished.

The Nextflow -bg flag launches Nextflow in the background, detached from your terminal so that the workflow does not stop if you log out of your session. The logs are saved to a file.

Alternatively, you can use screen / tmux or similar tool to create a detached session which you can log back into at a later time.
Some HPC setups also allow you to run nextflow within a cluster job submitted your job scheduler (from where it submits more jobs).

## Nextflow memory requirements

In some cases, the Nextflow Java virtual machines can start to request a large amount of memory.
We recommend adding the following line to your environment to limit this (typically in ~/.bashrc or ~./bash_profile):

`bash
NXF_OPTS='-Xms1g -Xmx4g'
`




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





